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ASYMPTOTIC ANALYSIS OF THE PLANE CONTACT PROBLEM OF ELASTICITY 

THEORY FOR A TWO-LAYER FOUNDATION 

V. I. Avilkin and E. V. Kovalenko UDC 624.073 

An asymptotic analysis is presented of the plane contact problem of elasticity theory 
for a two-layer foundation that permits selection of some model of the upper relative to a 
thin layer (coating), depending on the relationship between the physicomechanical and geo- 
metric values of the coating and the support (elastic half plane). 

I. Let us consider an elastic half plane (y ~< 0) with Poisson ratio v2 and shear modulus 
G2. We assume that there is a relatively thin layer 0 ~< y ~< h(vi, Gi) on and rigidly con- 
nected to the half-plane surface.* Let a rigid stamp, for which the shape of the foundation 
is described by a function f(x) even in x be impressed without friction by a force P on the 
upper boundary of such a composite medium. The boundary conditions of the problem posed are 
written in the form (the superscript I refers to the layer, and the superscript 2 to the half 
plane) 

U = h :  /)(1) = v{_ (x)  = - -  (~ -]- Jr (x ) ,  (7 (1) = - -  0"4_ (x )  ( I x [ ~ a) ,  

(751)=0. ( I x l > a ) ,  ~ ( ~ ) = % { x ) = O  ( I z l < o r  ( 1 . 1 )  

y = O: (7(1) = (7y(2), ~xy~(1) 2___ ~xy'~(2) v(l)  __.~ v_(x) ~-- v (2) ,  lz ( i )  = U_(X)  ---~ tt (2). 

The stresses and strains vanish at infinity. Here 6 is the rigid displacement of the stamp 
under the action of the force P applied thereto, o• T_+(x) are the normal and tangential 
forces at the upper (plus sign) and lower (minus sign) faces of the layer, respectively, and 
v_+, u_+ are the vertical and horizontal displacements of the faces of the layer. 

The formulated problem is reduced by integral transform methods [I] to the determination 
of the contact pressures o+(x) from a convolution type integral equation of the first kind in 
a finite interval [2] 

i T ] _ V ~ e x p - ~ . _ ~ - ( ~ - x )  d c c = 2 r ~ O l [ 5 - - / ( x ) ]  ( xl<~a); ( 1 . 2 )  

7 a  - -o o + ic  

M ~- 4 l u I e-21ul - -  Ne-Tatul ( 1 . 3 )  

L (u) = M - -  (1 -[- 4a 2 + NM) e -e l~l  -4- N c  -a lu l  ' 

t q  = t -- v~', •  = 3 - 4v~, 0~ = v ~  -~ (~ = t ,  2), n = 0~0~ -~ , "  

.~'1 = (n~_t I -[- p,2Xl)(n~tl - -  •/.2) -1 ,  N = (n~tlX 2 - -  ~2Xl)( r t~IX2 -~- ~t2) -1 .  

Taking account of the notation 

u = ~h, x = J a ,  ~ = ~'a, ~ = h~-~, (1 . 4 )  
~ §  (x) 0~ - i  = q ( x ' ) ,  .6"= ha ,  ] ( x )  = r (x ' )  a 

*We call a layer thin if the dimensionless parameter is X = ha "i << I, where 2a is the loading 
section of the strip. 
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we represent ( 1 . 2 )  in the form (primes are omitted) 

1 

- - i  

oo+ic 
k ( z ) =  ~ L (u) e-iUZdu (~ = ~-~---f ) .  

--oo+ic 

( i  .s) 

Here the function L(u) is continuous, real, and even on the real axis, and also 

L(t) = I -}- O ( e - 2 1 t l )  (t ~ oo), L(t) = n -Jr" Al t l  + O(P') (t ~ 0), 

( t  - -  2v2) "~ [ vl~t 2 (i --  2vl)2 ~ l , "  
A = - "  ~ [n2 -{- 2n V1 (1 -- 2v2) (1 2v2)" ~ j u = t + i~. 

We w i l l  d e s c r i b e  t h e  p h y s i c o m e c h a n i c a l  p r o p e r t i e s  o f  t h e  t h i n  l a y e r  b y  u s i n g  r e f i n e d  
e q u a t i o n s  o f  p l a t e s .  To d e r i v e  t h e m  we u s e  t h e  s o l u t i o n  o f  t h e  f i r s t  b o u n d a r y - v a l u e  p r o b l e m  
o f  e l a s t i c i t y  t h e o r y  f o r  a s t r i p ,  i . e . ,  we f i n d  t h e  s o l u t i o n  o f  t h e  e l a s t i c i t y  t h e o r y  e q u a -  
t i o n s  i n  d i s p l a c e m e n t s  (Lam~ e q u a t i o n s )  f o r  t h e  f o l l o w i n g  b o u n d a r y  c o n d i t i o n s  on i t s  f a c e s  

A p p l y i n g  t h e  F o u r i e r  i n t e g r a l  t r a n s f o r m  in  x a s  a b o v e ,  we o b t a i n  
o o  . 

, '  i . I ' [ q  (cr ch all,+ % (o;) all sh ~zg + d i (cr shag -f- d s (o 0 my chay] ae .  iax do'.; ( 1 6 ) ~ ( z ,  u)  = - " f s  
- - o o  

o o  

, ,  vx(x, y ) - -  2~ { [d~ ( o ; ) - - • 215  ( 1 . 7 )  

- - o o  

S* (a) = " ch (cr 

9 (~) = [2~a~D+ (~)]-~ {[Z+.(a) + ~_ (a)] S; (~) + ~ [T+ (~) -- T_ (~)1 O; (a)}, 
dj (~) = [2 iGlaD (c~)] -~ {[E+ (a) --  ~_ (a)] S~ (a) + i [T+ (~) + T (~)] C~ (a)}, 

D• (a) = shah + r S 1 (a) = (ah/2) ch (~zh/2) -- (1 --  2v 0 sh (ah/2), 

S 2 (a) = --  sh (ah/2), C 1 (a) = 2V1 ch (ah/2) -- (ah/2) sh (ah/2), 

C 2 (a) ch (ah/2), S~ (a) = (ah/2) sh (~zh/2). ( i - "  2vl) ch (ah/2), 

C~ (~z) = 2~t. 1 sh (ah/2) --  (ah/2) ch (ah/2), C~ (o 0 = sh (ah/2). 

Here E_+(e) and T• are, respectively, the Fourier transforms of the functions o• and 
r+(x) . 

As ~ § 0, by simplifying (1.6) and (1.7), written in Fourier transform symbols, and then 
returning to the originals while taking into account that u % Th, v % oh in contact problems 
(see the degenerate solutions for a layer of small thickness, say [I]), we write 

= . -  ( %  + 4 )  - _ - i-0- - 4 '  

-T- 3 a  ( %  - ~._) ___ (2 - re, l) ~ ( %  _ .-v- 3~_,.,. - - f  ,.'% + .~  - - - Q ( %  + _ ; j ,  (1.8) 

[ a~h%~) = 6,u 1 LO'+ ~- ~  - -  y ( %  - + ~ ( %  - + 

, �9 12 " ~_r h ~ ' < ~ )  ?~))+~ _ .  ( 1 . 9 )  
- + - - 

Let us note that (1.8) and (1.9) permit taking into account both the deformation of the longi- 
tudinal tension and the transverse shear and the deformation of the longitudinal shear and 
the transverse compression of the elastic coating (plate). Moreover, utilization of (1.8) 
and (1.9) for the solution of contact problems does not result in the appearance of lumped 
force sections on the connecting boundaries as when using the elasticity theory equations 
as well as (1.10) and (I.]I). As is known [3-6], this disadvantage is inherent to t:he dif- 
ferential equations of thin-walled elastic element bending, obtained on the basis of the 
Kirchhoff--Love, Reissner hypotheses or their modifications. 
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If the displacements has been averaged with respect to the thickness in (1.8) and (I .9) 
because of the smallness of the parameter % = ha -l , then we would arrive at the following 
simplified equations of plate deformation 

tp n 

4G shu ~ = - -  2p, 1 Q:+ - -  ;r_) - -  v lh ( ~  + @ a t )  -4- ( i - -  2wl) (h2/6) ('~+ - -  ~_); ( 1 . 1  0)  

4Glh'~v~ ) = t2plh  ('c+ -~- ~ ' )  - -  ~tllt 3 ( ' :+ -~- T " )  ~- 24tt 1 (cr+ - -  cr_) _ 2 (3 - -  2v l )h  ~" ( a+  - -  a"_) @ (3 - -  2~j) (h4/10) ( a~ )  - -  a(_~)), ( 1 .1  1 ) 

which, in contrast to (1.8) and (1.9), take account only of the longitudinal tension and 
transverse bending deformations, t 

2. Let us consider the problem formulated in Sec. I by using different versions of the 
mechanical models of an elastic layer. We assume that its stress--strain state is character- 
ized by (I .8) and (I .9). Applying the Fourier transform in the coordinate x to the Lame equa- 
tions which are used to describe the deformations of the elastic half plane, and to (I .8) and 
(1.9) with conditions (1.1) and the notation (1.4) taken into account, we obtain an integral 
equation of the form (I .5) in the unknown contact pressures under the stamp, where 

+ ~ %1'~1 ~ t +  bh, l~'l 1~ L ( u ) =  n I~=I h=l 

. a l l ' =  (1 - -  2vl) (21t~) -1 - -  nv 1 (! - -  2v:) (,l~t~) -1  -~ n2• (2~t~) -1 ,  a.z 1 = 32n/t5, 

a.~ = 47,~/~0, ~.1 = (22 - 3 %  + ,3., D ( , 2 0 . D  -~ + ~ (5 - ,3,~) (,  - 2~)  ( ,20~, .~)-~  + ,,'-~ (ao~,D -~, h .  = ~ ,  

hal = (27 - -  44v~ -~ t2v~) (60r!~) -~ -t- n (i - - 2 ' ~ )  (1 - -  2v2) (6P~lp.2)-~ --]- n~'• (iZit~) -1 .  

We now take the plate bending equation of Reissner type [3], obtained from (1.11) if 
the third component in its right side is neglected, as the mechanical model of the coating 

3 - -  2v_ ~ 
�9 - h~ .0) --  '_ �9 h ~ ~ " " ~ '" ~" ( 2 . 1  ) % % 6 ~  ( %  - ~_) + 3t~h~ - - - - - Z - -  ( % -  r  ~ ~ _.  

Moreover, we consider the horizontal displacement in the thin layer described by the equation 
of uniaxial tension of the plate, i.e., the differential equation (1.10) in which the com- 
ponent of order %2 has been eliminated in the right side 

G1hu , = 2~ -- vlh (~+ u< a" ). (2.2) 

It is taken into account in (2.1) and (2.2) that ~+ - O. Setting 

t , + = v i = v , ,  u + = u _ = u ,  ( 2 . 3 )  

into (1.1), we arrive at the integral equation (1.5) where 

L O ~ ) =  n - k  ,%. I u I n t+ bk21ul  , 

. ~  = n-'~ (2~,0-~ _ ,, ( ,  _ 2~)  ,~ ( 2 t , ~ )  -~,  ~ -_ ,, (3 - ~,,1) ( , 2 ~ ) - ~ ,  

~ = ,, (3 - 2 ~ )  ( z ~ t , ~ )  -~ [" • - (' - z~.,) ~,tq-~]. ~,~ - - , ,~  ( s ~ o - , ,  

b~ --  2n, b22 = (3 -{- v~) ( t 2 p ~ ) - '  -}- n (1 .-- 2v2) (2p2) -~ ,  b~a = n (4 - -  3vl) ( ~ ) - 1 ,  

b '  = " ' ~  ( , z ~ g ) - '  + ,, (~ - 2v 0 (~ - 2,~,) ( z%t ,~ ) - '  + ~ (~s~,~)-'. 

Furthermore, let the physicomechanical properties of the coating be described by the 
Kirchhoff--Love equations for a plate [3] obtained from (1.11) by discarding components of 
order %2 and higher in its right side 

and by (2.2). In conformity with (1.1) and (2.3), the problem results in finding the un- 
known contact pressures under the stamp from the integral equation (I .5), where 

L (u) = n .-~ aha l u [l~ t -]- ~_a bha l u l k , 

~Equations (1.8)-(1.11) were obtained jointly with V. M. Aleksandrov. 
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2--I a13 =-- n2• ( 2 p . ~ )  , a,,:~ = - -  nv 1 ( 8 # 1 )  - ' f ,  b ,a  : 2a, 

b,~ = n ( l  --2vi)(2p.,)-l-F v 1 ( ~ t l ) - - I  , b33 = rt'/6, (2.4) 

Let us still examine the following simplified version of (1.10) and (1.11). Neglecting 
terms of order %2 and above therein, we obtain 

= - , , h  (o$ + % - (,/.) 

Analogously to the previously elucidated, we arrive at an integral equation of the form (1.5) 
where 

L(g):[1"t-~h~lah4l.ulh][l'~-h~tbh4'~t'h];l, 
al, l = n (2.z)-: t  [ n •  - -  (1 - -  2v2) r iFT: t ] ,  a2, = n 2 (t  - -2v , )  (2tt2) - I  -{-nv 1 (4~1)- I  , ( 2 . 5 )  

Let the layer whose stress--strain state is described by ( 1 . 8 )  and ( 1 . 9 )  lie on a rigid 
foundation, i.e., set 

y = O: y(1) = O, U(1) = 0 

i n  ( 1 . 1 ) .  T h e n  t h e  b o u n d a r y - v a l u e  p r o b l e m  ( 1 . 8 ) ,  ( 1 . 9 ) ,  ( 1 . 1 ) ,  ( 2 . 6 )  
i n t e g r a l  e q u a t i o n  ( 1 . 5 )  w h o s e  k e r n e l  h a s  t h e  f o r m  

k (z) = 2 ~ L (~) cos uzdu 
0 

L (u) = ahau2h bhr~u2h �9 , 
h=o  = 

(2.6) 

is equivalent to the 

( 2 . 7 )  

t - -  2v 1 34 - -  53v 1 -4- 9v~ 22 - -  39v I -F t3v~ 
% 5 =  2~t12', a 1 5 - -  60~t~ , a 2 5 =  Jt20F ~ , ( 2 . 3 )  

bo5 = t, b,5 = (17 --  2v,) ( i 5 ~ i ) - ' ,  bz5 = (27 - -  44v 1 -F 12v~) (60tt~) -1 

as is easy to show by using the method elucidated. 

Taking account of the behavior of the Fourier transforms (2.8 at infinity and using 
the properties of the Dirac delta function [7], Eqs. (1.5) and (2.7) can be written in the 
form 

I 

nlq(x)+ yq(~)l(W)d~=n[A--r(x)] ( [ x ] ~ < l ) ,  

--i  

l = L L (.) = ( %  + bh/"h - 1  
o ~ : o  ( 2 . 9 )  

nl  = r~a25b~51' ao6 = %5 - -  a255251' a16 = a15 - -  a25blsb2"-51~ 

It should here be kept in mind that if T+ = 0, u_ = v_ = 0, then to the accuracy of terms 
in 0(%), a Voss--Winkler foundation equation is obtained from (1.8) and (1.9) that describes 
the deformation of transverse compression of the coating: 

2Gt~iv+ = (i -- 2vl)h~ +, a+ = d_, (2.10) 

Now if the physicomechanical properties of the thin layer are characterized by (2.10) then the 
contact problem formulated in Sec. I for a two-layer foundation can be reduced to an integral 
equation of the mixed problem for a foundation by the Fourier integral transform method [9] 

i 
I - -  2v~ n 

2 - - - ~ q ( x ) @ - 7 ,  J q(~)[--lnl~--xl+Dld~=A--r(z) ( I x l ~ i ) ,  ( 2 . 1 1 )  
--1 

where D is an arbitrary constant. It will be determined if the half plane is consiciered a 
layer of large thickness H. Then D = InHa -I + a0, where d0 = --0.352 when the layer lies on 
a rigid foundation without friction, and do = -0.527 when the layer is clamped rigidly on the 
foundation (v2 = 0.3) [I]. 
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Finally, in the case when the layer (2.10) lies on a rigid foundation, we arrive at an 
integral equation of the form (1.5), where 

L ( . )  = ( i  - -  2 V l ) ( 2 ~ )  - ~  I"  I, ( 2 .  t 2 )  

from which the expression for the contact pressures will be given by the formula 

q(x)=2p~k - l ( i - 2 v l ) - ~ [ h - r ( x ) i  ( ]X]~l) .  

Moreover, the statics condition to set up a connection between the quantities P and 

I 

V ( o ~ - !  ffi ~ q (~) a~ 
- - 1  

should be added to the integral equations obtained for the contact problem about the im- 
pression of a stamp in a composite foundation (1.5), (2.9), (2.11). 

Let us note that if the contact zone between the stamp and the coating a is unknown in 
advance (the stamp has no corners) additional conditions must be formulated to determine it. 

The additional conditions for the coating being modelled by the Kirchhoff-Love plate [8] 
will be 

v ,  ( •  i )  = - -  r ~ ( •  l ) .  

For the remaining models it is necessary to take account of the continuity conditions~+(x) for. 
the stress during passage through the point x = • q(• = 0. 

3. We now consider particular cases of the formulated problem for (1.5) by considering 

n N %m (% ~ 0). (3. I) 

Here the stiffness of the elastic half plane is greater than the coating stiffness for m > 0, 
and conversely for m < 0. 

Let m = 0. Substituting (3.1) into (1.3), we obtain to the accuracy of terms of the 
order of O(X 3) the expression (2.1) which corresponds to the case of a contact problem for 
a two-layer foundation when the physicomechanical properties of the coating are described by 
(1.8) and (1.9). 

For m = I we have from (1.3) with (3.1) taken into account to the accuracy of terms of 
the order of 0(~ 2) 

2--1 L (!,) = (i - 2~i) (2~,) I. I+ n 

As is seen from (2.10), in this case the coating works on a Voss--Winkler type foundation. 

For m ~ 2, we obtain an expression of the form (2.12) by discarding terms on the order 
of 0(~ 2) in (1.3), i.e., the whole two-layer packet works on a Voss--Winkler type foundation 
with bedding coefficient 2Gi~lh-i(1 -- 2vi) -i. 

We now allow m ~ 6. Substituting (3.1) into (1.3), we arrive at a contact problem for 
a rigidly clamped layer at the lower boundary, whose physicomechanical properties are de- 
scribed by (1.8) and (1.9) to the accuracy of terms of the order 0(~2). 

Furthermore, let us consider the case when the rigidity of the coating is greater than 
the rigidity of the foundation. 

Setting m = --I, according to (3.1) and (1.3) we obtain an expression of the form (2.5) 
to the accuracy of terms 0(~), i.e., the coating will operate as a kind of plate. For m 
--2, substituting (3.1) into (1.3) and keeping terms of order up to 0(~2), we will have 

L(~r t + n - -  al l + 2 a  lul+ ')--'~,, ~t~. +'*-"-fT'~'~ a1.t2~[ " (3.2) 

The expansion (3.2) agrees with the corresponding expression (2.4) to the accuracy of terms 
0(X2). Therefore, to a given accuracy the physicomechanical properties of a coating can be 
modeled by the bending equations of Kirchh0ff--Love plates. Analogously neglected terms on 
the order of 0(~ 2) for m = --2, O(X 3) for m = --3, etc., we obtain the kernel of the integral 
equation for the contact problem about stamp interaction with an elastic half plane through 
a plate of Reissner type. 

Let us note that when the physicomechanical properties of the coating are described by 
(1.8) and (1.9), the function (2.1) will agree with the expansion (1.3) to the accuracy of 
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terms O(l 2) inclusive for m = --2, and to O(i ~) for m = --3, etc. 

Finally, for m = --7, expression (1.3) to the accuracy of terms 0(~ 4) takes the form 
corresponding to the problem about stamp interaction with a layer whose lower face is free 
of forces (the presence of an appropriate layer overload outside the stamp must be assumed 
for the correct formulation of such a problem). 

Thus, depending on the relationships between the coating and foundation stiffnesses and 
the order of the terms in ~ retained in the Fourier transform of the kernel (1.3), functions 
L(u) were obtained that correspond to contact problems about stamp interaction with an elastic 
half plane through a plate described by (1.8) and (1.9), through a plate of Reissner type, a 
Kirchhoff--Love plate, a coating operating on the plate cover type, a layer of Winkler springs. 
Moreover, the passage to the limit case of impression of a stamp on a coating of the under- 
lying rigid foundation is possible. 

In conclusion, we note that the asymptotic analysis presented permits selection of any 
coating model depending on the relationship between the physicomechanical and the geometrical 
characteristics with respect to the thin layer and the half plane, which is more preferrable 
in the majority of cases than the use of theory of elasticity equations. As a result of the 
analysis, it is seen that the refined plate model described by (1.8) and (1.9) corresponds 
sufficiently well to the exact solution of the problem in the whole range of variation of the 
change in the parameter m. 

The authors are grateful to V. M. Aleksandrov for comments and attention to the research. 
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